Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Liver Int ; 43(6): 1345-1356, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36810858

RESUMEN

BACKGROUND AND AIMS: Human bone marrow mesenchymal stem cells (hBMSCs) are important for developing a dual-humanized mouse model to clarify disease pathogenesis. We aimed to elucidate the characteristics of hBMSC transdifferentiation into liver and immune cells. METHODS: A single type of hBMSCs was transplanted into immunodeficient Fah-/- Rag2-/- IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF). Liver transcriptional data from the hBMSC-transplanted mice were analysed to identify transdifferentiation with traces of liver and immune chimerism. RESULTS: Mice with FHF were rescued by implanted hBMSCs. Human albumin/leukocyte antigen (HLA) and CD45/HLA double-positive hepatocytes and immune cells were observed in the rescued mice during the initial 3 days. The transcriptomics analysis of liver tissues from dual-humanized mice identified two transdifferentiation phases (cellular proliferation at 1-5 days and cellular differentiation/maturation at 5-14 days) and ten cell lineages transdifferentiated from hBMSCs: human hepatocytes, cholangiocytes, stellate cells, myofibroblasts, endothelial cells and immune cells (T/B/NK/NKT/Kupffer cells). Two biological processes, hepatic metabolism and liver regeneration, were characterized in the first phase, and two additional biological processes, immune cell growth and extracellular matrix (ECM) regulation, were observed in the second phase. Immunohistochemistry verified that the ten hBMSC-derived liver and immune cells were present in the livers of dual-humanized mice. CONCLUSIONS: A syngeneic liver-immune dual-humanized mouse model was developed by transplanting a single type of hBMSC. Four biological processes linked to the transdifferentiation and biological functions of ten human liver and immune cell lineages were identified, which may help to elucidate the molecular basis of this dual-humanized mouse model for further clarifying disease pathogenesis.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Células Endoteliales , Transcriptoma , Ratones SCID , Hígado/patología , Células Madre Mesenquimatosas/metabolismo
2.
Front Oncol ; 12: 868411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558516

RESUMEN

The current tumor-node-metastasis (TNM) system is limited in predicting the survival and guiding the treatment of hepatocellular carcinoma (HCC) patients since the TNM system only focuses on the anatomical factors, regardless of the intratumoral molecule heterogeneity. Besides, the landscape of intratumoral immune genes has emerged as a prognostic indicator. The mediator complex subunit 8 (MED8) is a major polymerase regulator and has been described as an oncogene in renal cell carcinoma, but its pathophysiological significance of HCC and its contribution to the prognosis of HCC remain unclear. Here, we aimed to discuss the expression profile and clinical correlation of MED8 in HCC and construct a predictive model based on MED8-related immunomodulators as a supplement to the TNM system. According to our analyses, MED8 was overexpressed in HCC tissues and increased expression of MED8 was an indicator of poor outcome in HCC. The knockdown of MED8 weakened the proliferation, colony forming, and migration of HepG2 and Huh7 cells. Subsequently, a predictive model was identified based on a panel of three MED8-related immunomodulators using The Cancer Genome Atlas (TCGA) database and further validated in International Cancer Genome Consortium (ICGC) database. The combination of the predictive model and the TNM system could improve the performance in predicting the survival of HCC patients. High-risk patients had poor overall survival in TCGA and ICGC databases, as well as in subgroup analysis with early clinicopathology classification. It was also found that high-risk patients had a higher probability of recurrence in TCGA cohort. Furthermore, low-risk score indicated a better response to immunotherapy and drug therapy. This predictive model can be served as a supplement to the TNM system and may have implications in prognosis stratification and therapeutic guidance for HCC.

3.
J Hepatol ; 75(5): 1104-1115, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34090929

RESUMEN

BACKGROUND & AIMS: Early determination of the prognosis of patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is important to guide clinical management and decrease mortality. The aim of this study was to develop a new simplified prognostic score to accurately predict outcomes in patients with HBV-ACLF. METHODS: Prospective clinical data from 2,409 hospitalized patients with acute deterioration of HBV-related chronic liver disease were used to develop a new prognostic score that was validated in an external group. RESULTS: A total of 954 enrolled patients with HBV-ACLF were diagnosed based on the Chinese Group on the Study of Severe Hepatitis B-ACLF (COSSH-ACLF) criteria. Six predictive factors were significantly related to 28-day mortality and constituted a new prognostic score (=1.649×ln(international normalized ratio)+0.457×hepatic encephalopathy score+0.425×ln(neutrophil)+0.396×ln(total bilirubin)+0.576×ln(serum urea)+0.033×age). The C-indices of the new score for 28-/90-day mortality (0.826/0.809) were significantly higher than those of 4 other scores (COSSH-ACLF, 0.793/0.784; CLIF-C ACLF, 0.792/0.770; MELD, 0.731/0.727; MELD-Na, 0.730/0.726; all p <0.05). The prediction error rates of the new score for 28-day mortality were significantly lower than those of the 4 other scores: COSSH-ACLF (15.9%), CLIF-C ACLF (16.3%), MELD (35.3%) and MELD-Na (35.6%). The probability density function evaluation and risk stratification of the new score also showed the highest predictive values for mortality. These results were then validated in an external cohort. CONCLUSION: A new prognostic score based on 6 predictors, without an assessment of organ failure, can accurately predict short-term mortality in patients with HBV-ACLF and might be used to guide clinical management. LAY SUMMARY: Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a complex syndrome that is associated with a high short-term mortality rate. We developed a simplified prognostic score for patients suffering from this condition based on a prospective multicentre cohort. This new score had better predictive ability than 4 other commonly used scores.


Asunto(s)
Hepatitis B/clasificación , Hepatitis B/diagnóstico , Proyectos de Investigación/normas , Insuficiencia Hepática Crónica Agudizada/epidemiología , Insuficiencia Hepática Crónica Agudizada/etiología , Adulto , Estudios de Cohortes , Femenino , Hepatitis B/complicaciones , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/patogenicidad , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Curva ROC , Proyectos de Investigación/estadística & datos numéricos , Estudios Retrospectivos , Estadísticas no Paramétricas
4.
Stem Cell Res ; 47: 101900, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32622343

RESUMEN

BACKGROUND & AIMS: Biliary injury is one of the main pathological mechanisms of fulminant hepatic failure (FHF). Delta-like ligand 4 (DLL4)-mediated Notch activation contributes to reversing biliary injury; however, the specific role of DLL4 in biliary restoration is still unclear. This study aimed to determine whether human bone marrow mesenchymal stem cells (hBMSCs) can differentiate into biliary epithelial cells (cholangiocytes) in vitro and in vivo and to clarify the role of DLL4 in restoring damaged liver by enhancing cholangiocyte differentiation. METHODS: hBMSCs were transplanted into immunodeficient mice (FRGS) with FHF induced by the hamster-anti-mouse CD95 antibody JO2. The appearance of human cholangiocytes was evaluated in the generated hBMSC-FRGS mice by q-PCR expression, flow cytometry and immunohistochemistry. The potency of DLL4 in inducing cholangiocyte differentiation from hBMSCs was assessed by observing the cell morphology and measuring the expression of cholangiocyte-specific genes and proteins. RESULTS: Human KRT19- and KRT7-double-positive cholangiocyte-like cells appeared in hBMSC-FRGS mice at 12 weeks after transplantation. After these cells were separated and collected by fluorescent-activated cell sorting (FACS), there were high levels of expression of eight typical human cholangiocyte-specific genes and proteins (e.g., KRT19 and KRT7). Furthermore, hBMSC-derived cholangiocytes induced by DLL4 had a better shape with higher nucleus/cytoplasm ratios and showed a specific increase in the expression of cholangiocyte-specific genes and proteins (e.g., KRT19, KRT7, SOX9 and CFTR). CONCLUSIONS: Cholangiocytes can be efficiently differentiated from hBMSCs in vivo and in vitro. DLL4 restores damaged liver by enhancing cholangiocyte differentiation from hBMSCs and has the potential to be used in future clinical therapeutic applications.

5.
Transl Cancer Res ; 9(5): 3180-3190, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-35117684

RESUMEN

BACKGROUND: RGMB antisense RNA 1 (RGMB-AS1) is a member of long non-coding RNAs (lncRNAs) and relates to the carcinogenesis of numerous cancers. Nonetheless, its performance and mechanism in cervical cancer (CC) is unclear. METHODS: The expressions of RGMB-AS1, microRNA-4428 (miR-4428), PBX homeobox 1 (PBX1) were analyzed by quantitative real-time PCR (qRT-PCR). Nuclear-cytoplasmic fractionation was used to locate RGMB-AS1. Cell counting kit-8 (CCK-8), EdU, TUNEL, Western blot and transwell assays were performed to assess RGMB-AS1 function in proliferation, apoptosis, and invasion in vitro. Interplays involving miR-4428, RGMB-AS1 and PBX1 were verified applying luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP). RESULTS: RGMB-AS1 level was high in CC specimens and cells. RGMB-AS1 encouraged proliferation, and invasion, and depressed apoptosis in CC cells. Further, miR-4428 was screened as a targeted for RGMB-AS1, and RGMB-AS1 performed the competitive endogenous RNA (ceRNA) role to release PBX1 from miR-4428. Correlation analysis based on clinical specimens confirmed positive association between RGMB-AS1 and PBX1 and negative association of miR-4428 with RGMB-AS1 and PBX1. Rescue experiments indicated that PBX1 overexpression counteracted RGMB-AS1 silence-caused inhibition on CC development. CONCLUSIONS: RGMB-AS1 regulated miR-4428/PBX1 axis to aggravate CC development, indicating that targeting RGMB-AS1 could be a potent way for developing the novel therapeutic methods for CC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...